Unifying Parsimonious Tree Reconciliation

نویسندگان

  • Nicolas Wieseke
  • Matthias Bernt
  • Martin Middendorf
چکیده

Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact reconciliation of undated trees

Reconciliation methods aim at recovering macro evolutionary events and at localizing them in the species history, by observing discrepancies between gene family trees and species trees. In this article we introduce an Integer Linear Programming (ILP) approach for the NP-hard problem of computing a most parsimonious time-consistent reconciliation of a gene tree with a species tree when dating in...

متن کامل

Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.

Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS) can dramatically affect the gene tree, many of the most popular reconciliation methods consider discordance only due to gene duplication and loss (and sometime...

متن کامل

New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees

Reconciliation between a set of gene trees and a species tree is the most commonly used approach to infer the duplication and loss events in the evolution of gene families, given a species tree. When a species tree is not known, a natural algorithmic problem is to infer a species tree such that the corresponding reconciliation minimizes the number of duplications and/or losses. In this paper, w...

متن کامل

Support Measures to Estimate the Reliability of Evolutionary Events Predicted by Reconciliation Methods

The genome content of extant species is derived from that of ancestral genomes, distorted by evolutionary events such as gene duplications, transfers and losses. Reconciliation methods aim at recovering such events and at localizing them in the species history, by comparing gene family trees to species trees. These methods play an important role in studying genome evolution as well as in inferr...

متن کامل

Space of Gene/Species Trees Reconciliations and Parsimonious Models

We describe algorithms to study the space of all possible reconciliations between a gene tree and a species tree, that is counting the size of this space, uniformly generate a random reconciliation, and exploring this space in optimal time using combinatorial operators. We also extend these algorithms for optimal and sub-optimal reconciliations according to the three usual combinatorial costs (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013